If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15p^2+p=1
We move all terms to the left:
15p^2+p-(1)=0
a = 15; b = 1; c = -1;
Δ = b2-4ac
Δ = 12-4·15·(-1)
Δ = 61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{61}}{2*15}=\frac{-1-\sqrt{61}}{30} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{61}}{2*15}=\frac{-1+\sqrt{61}}{30} $
| 2×+2y=180 | | q=7(9) | | k+84=89 | | r-86=10 | | z-58=33 | | q=42*7 | | c+7=50 | | p=61+29 | | 2y-50+70-20+90=180 | | 2x=x-3+2x-7 | | 2x(x+1)=45 | | 5y²=9 | | b+(b+1)/4+b+2=21 | | 13+w=5 | | 4x-6(12)=36 | | n=9-7 | | −7+10r=−5r | | 7x=3x=20 | | 8.0x=6.4 | | 3y+24=(10y-40)+8 | | 3y+24=10(y-4)+8 | | y/3+y/3-4=2 | | 7m+6÷4m+2=2 | | 0.03x+750=0.05x+600 | | 5y−15=35 | | 1/4x-7/4=5/8x-8/14 | | (2x-1)3/4=27 | | C^2+4x+4=3 | | (D^3-D^2+4D-4)y=0 | | 3x-2÷2+2x÷3=6 | | y-5=2(10+3y) | | 12+7z=6-z |